• Users Online: 140
  • Print this page
  • Email this page
Year : 2019  |  Volume : 68  |  Issue : 1  |  Page : 62-67

Sodium arsenite exposure during early postnatal period induces morphological and biochemical changes in rat kidney

1 Christian Medical College, Vellore, Tamil Nadu, India
2 Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India

Correspondence Address:
Dr. Pushpa Dhar
All India Institute of Medical Sciences, New Delhi - 110 029
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/JASI.JASI_34_19

Rights and Permissions

Introduction: The incidence of arsenic (As)-induced toxicity is increasing steadily all over the globe. Consumption of As-contaminated water is the chief source of exposure to As. Kidneys are important organs involved in the excretion of the final metabolized products of inorganic As (iAs) and organic As, thus becoming highly vulnerable to As-induced adverse effects. The functional and morphological maturation of kidneys during the gestational period continues to a variable extent into the early postnatal period and accordingly, the vulnerability to As exposure is increased manifold during postnatal period. Material and Methods: The present study aimed to assess the function and morphology of the developing kidney of rats exposed to sodium arsenite (Na As O2) (1.5 mg/kg body weight [bwt] intraperitoneally) from postnatal day 1–28. On day 29, the perfusion fixed kidney tissue was processed for paraffin embedding, whereas fresh kidney tissue was processed for biochemical estimation of reduced glutathione (GSH). Blood samples were collected intracardially for the assessment of serum urea and creatinine levels. Results: Functional deficits were reflected by increased levels of serum urea and creatinine levels in iAs-exposed animals. The GSH levels in the renal tissue of experimental animals showed a significant decrease (81.20 ± 26.79 μg/g) as against GSH levels in controls (122.45 ± 30.97 μg/g). Microscopic observations revealed obliterated Bowman's capsular space with increased cellularity in the experimental group. In addition, decrease in the number as well as size of glomeruli was noted in iAs alone-treated animals. Discussion and Conclusion: The adverse effects of As have been widely studied in various organ systems in adults. Our data showed a significant alteration in kidney parameters (structural and functional) of rats exposed to Na As O2 during early postnatal period, suggesting thereby increased vulnerability of the developing kidney to As exposure. Postnatal exposure of neonatal rats to sodium arsenite induces adverse effects on developing kidney.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded20    
    Comments [Add]    

Recommend this journal